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Abstract 

Near-infrared (near-IR) spectroscopy was used to qualitatively assess the homogeneity of a typical direct 
compression pharmaceutical powder blend consisting of hydrochlorothiazide, fast-flo lactose, croscarmellose sodium, 
and magnesium stearate. Near-IR diffuse reflectance spectra were collected from thieved powder samples using a 
grating-based spectrometer. A second-derivative calculation and principal component analysis were performed on the 
spectra prior to qualitative evaluation. Blend homogeneity was determined using single- and multiple-sample 
bootstrap algorithms and traditional chi-square analysis. The results suggested that bootstrap techniques provided 
greater sensitivity for assessing blend homogeneity than chi-square calculations and that near-IR has great potential 
as an analytical tool in powder blend analysis. 

Keywords: Content uniformity; Homogeneity; Mixing; Near-infrared spectroscopy; Powder blend; Qualitative phar- 
maceutical analysis 

I. Introduction 

In recent years, the potential of near-infrared 
(near-IR) spectroscopy as a rapid non-destructive 
analytical technique for the pharamaceutical in- 
dustry has been reported [1-3]. Qualitative appli- 
cations of near-IR spectroscopy depend on 
pattern recognition methods to analyze multivari- 
ate data generated by the spectrometer. Pharma- 
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ceutical applications of qualitative near-IR spec- 
troscopy include identity and quality testing of  
raw materials [4,5], detection of  tablet and capsule 
tampering [6,7], detection of tablet degradation 
[8], analysis of parenteral products [9], and deter- 
mination of ointment homogeneity [10]. The po- 
tential of near-IR in validating powder mixing 
processes has also been described [11]. Because 
near-IR allows the analysis of complex matrices 
to be performed rapidly, non-destructively, and 
without the use of organic solvents, it offers sub- 
stantial advantages over traditional wet chemical 
techniques. 
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Preparation of a uniform powder blend prior to 
tabletting or encapsulation is a vital step in the 
production of solid pharmaceutical dosage forms. 
The determination of powder blend homogeneity 
is typically a labor-intensive process involving the 
removal of unit-dose samples from defined mixer 
locations using a sample thief, extraction of the 
active drug from the sample matrix, and drug 
content analysis by either high performance liquid 
chromatography or UV spectroscopy. The distri- 
bution of individual excipients is typically as- 
sumed to be homogeneous if the active ingredient 
is uniformly distributed. 

Because most pharmaceutical active ingredients 
and excipients absorb near-lR radiation, studies 
utilizing near-IR may complement the assay for 
the active ingredient by providing homogeneity 
information regarding all mixture components. 
Additionally, a direct non-destructive method for 
assessing powder blend homogeneity could be of 
great value in minimizing the sample preparation 
and assay time associated with traditional blend 
analysis procedures. 

This paper examines the application of near-IR 
in assessing the homogeneity of typical direct 
compression pharmaceutical powder blends con- 
sisting of hydrochlorothiazide, fast-flo lactose, 
croscarmellose sodium, and magnesium stearate. 
Blend homogeneity and optimal mixing times 
have been qualitatively determined using single- 
and multiple-sample bootstrap algorithms and 
traditional chi-square analysis. 

2. Experimental 

2.1. Materials 

Hydrochlorothiazide (Gyma Laboratories, 
Westbury, NY), Fastflo lactose (Foremost, Bara- 
boo, WI), croscarmellose sodium (Ac-Di-Sol, 
FMC, Philadelphia, PA), and magnesium stearate 
(Whitaker, Clark, and Daniels, South Plainfield, 
N J) were donated and used as received. All bulk 
powders were passed through a # 30 mesh screen 
prior to use. Methanol (VWR Scientific, West 
Chester, PA) was spectra grade. 

2.2. Mixing 

All mixing studies were carried out in a stain- 
less-steel 8-quart twin-shell blender (Patterson- 
Kelly Co., Inc., Stroudsburg, PA). The multi- 
component powder system consisted of fast-flo 
lactose (80%), hydrochlorothiazide (15%), crosc- 
armellose sodium (4%), and magnesium stearate 
(1%). Screened powders were loaded into the 
blender in the order listed above. The blender was 
filled to 90% of working capacity (v/v) and ro- 
tated at 25 rev min 1 throughout the study. 

Initially, five blends of identical composition 
were subjected to different mixing times of 1, 5, 
10, 15, and 20 rain. At the specified time, the 
blender was stopped and samples equivalent to 
1 3 dosage units, 200 600 mg, were removed 
from ten different powder bed locations using a 
sample thief. In the second part of this study, a 
single formulation was mixed for 30 min during 
which time six unit-dose samples were thieved 
from the blender at 2 min time intervals. In both 
experiments, powder samples were transferred to 
tared borosilicate sample vials and the sample 
weights were recorded for reference determination 
of drug concentration. 

2.3. Near-IR methodology 

Near-IR spectra for each powder sample were 
collected in triplicate using a Quantum 1200 Plus 
grating-based spectrometer (LT Industries, Rock- 
ville, MD) by scanning directly through the base 
of the sample vials. Spectral processing and chem- 
ometric analysis were performed using proprietary 
software written in SPEAKEASY IV EPSILON+(~) 
(Speakeasy Computing Corp., Chicago, IL). 

Near-IR spectra were collected by scanning 
from 1200 to 2400 nm in the reflectance mode. 
Reflectance values were linearized with a log 
(l/R) transformation. Individual sample vials 
were rotated 120 ° between triplicate scans to en- 
sure representative spectra. Triplicate scans were 
averaged to obtain one spectrum for each powder 
sample. To remove shifts in spectral baselines 
caused by particle size and packing differences, a 
second derivative calculation was used. 
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A principal component analysis (PCA) [12] of 
the second derivative spectra was performed. 
PCA was useful as a preprocessing treatment 
before application of the bootstrap algorithms 
because it simplified the spectra by removing the 
wavelengths that added only noise information. 
Spectra originally recorded as 1201 wavelengths 
were expressed through PCA as points in four- 
dimensional space. 

2.3.1. Bootstrap error-adjusted single-sample 
technique (BEST) 

The BEST represents a type of analytical pro- 
cedure designed to operate in the high-speed 
parallel or vector mode required of pattern- 
recognition tests involving thousands of samples. 
Lodder and Hieftje [13] have discussed this tech- 
nique, derived from Efron's bootstrap calcula- 
tion [14], in detail and have provided examples 
of its application. The BEST can be used to 
provide both quantitative and qualitative analy- 
ses of intact products. The BEST begins by 
treating each wavelength in a spectrum as a sin- 
gle point in multidimensional space ("hyper- 
space"). Each point is translated from the origin 
along each axis by an amount that corresponds 
to the magnitude of the signal observed at each 
wavelength. Samples with similar spectra map 
into clusters of points in similar regions of hy- 
perspace, with larger cluster size corresponding 
to samples with greater intrinsic variability. 

The BEST develops an estimate of the total 
sample population using a small set of known 
samples. A point estimate of the center of this 
known population is also calculated. When a 
new sample is analyzed, its spectrum is pro- 
jected into the same hyperspace as the known 
samples. A vector is then formed in hyperspace 
to connect the center of the population estimate 
to the new sample spectral point. A hypercylin- 
der is formed about this vector to contain a 
number of estimated-population spectral points. 
The density of these points in both directions 
along the central axis of the hypercylinder is 
used to construct an asymmetric nonparametric 
confidence interval. The use of a central 68% 
confidence interval produces BEST distances 
analogous to standard deviations. 

BEST distances are used to identify sample 
constituents. Uncorrected BEST distances (suit- 
able for unskewed training sets) are calculated 
as follows: 

O" 
\ / ~  I / 

where C~ is the center of the bootstrap distribu- 
tion, x/ is the test sample spectrum and ~ is a 
BEST standard deviation. When a sample spec- 
trum projects to a point within three standard 
deviations of the center of a cluster of spectral 
points from a known substance or product, the 
sample is considered to be a sample of the 
known material. The known product is either a 
pure substance or a mixture of components. 
When the new sample contains different sub- 
stances or components in concentrations that 
differ from the known product, the new sample 
spectral point is displaced from the known spec- 
tral cluster. The magnitude of this displacement 
increases as the difference between the new sam- 
ple and the set of known samples increases. 
Furthermore, the direction of the displacement 
of the new sample point corresponds to the 
spectra of the constituents responsible for the 
displacement. 

2.3.2. Modified bootstrap technique (modified 
BEST) 

Where the single-sample BEST algorithm pro- 
vides for the qualitative analysis of a single test 
sample, the modified BEST algorithm provides a 
test that uses multiple test spectra to detect false 
samples (as subclusters) well within the three 
standard deviation (SD) limit of a training set. 
The accurate detection of subclusters allows the 
determination of very small changes in compo- 
nent concentration. The modified BEST tech- 
nique is described in detail in Ref. [15]. 

The first steps of the modified BEST test are 
the same as in the single-sample BEST. A train- 
ing set is constructed from known samples and 
a Monte-Carlo approximation to the bootstrap 
distribution is calculated to estimate the popula- 
tion from which the the training set is drawn. 
The center of the cluster represents the best esti- 
mate of the spectrum of the compound. The 
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modified BEST varies from the single sample 
BEST by next projecting the bootstrap esti- 
mated test population into the same multidimen- 
sional space as the training set and calculating 
cumulative distribution functions (CDFs) for the 
estimated populations (training set and test set). 
As the number of observations (bootstrap repli- 
cates) increases, the rough empirical cumulative 
distribution function (ECDF) approaches the 
smooth theoretical cumulative distribution func- 
tion (TCDF). 

Plotting the ECDF vs. the TCDF,  for a given 
probability, generates the linear version of a cu- 
mulative distribution function, a quanti le-quan- 
tile (QQ) plot (see Figs. 9 and 10). Each cumu- 
lative probability value yields a pair of order 
statistics (one from each CDF) that form a 
point in the QQ plot. QQ plots are valuable 
tools for distinguishing differences in shape, size, 
and location between spectral clusters. Two sim- 
ilar clusters of spectra will demonstrate a linear 
QQ plot. Breaks and/or curves in the QQ plot 
indicate that differences exist between the 
groups. 

Spectral similarity is based on the linearity of  
the QQ plots generated. A 98% confidence limit 
for the correlation coefficient of the training set 
is calculated. QQ plots with correlation co- 
efficients less than the calculated confidence limit 
are considered to be spectrally different from the 
training group, while QQ plots with correlation 
coefficients greater than the confidence limit are 
considered to be spectrally similar. 

2.3.3. Chi-squared analysis 
The final method utilized for determination of 

opitmal blending times employed traditional chi- 
square analysis [16] to assess near-IR spectral 
variability. For each time point, the pooled vari- 
ance of the near-IR absorbance values at indi- 
vidual wavelengths is calculated as the weighted 
average of the variances, where the weights are 
the degrees of freedom. A chi-square statistic is 
then calculated and compared to a tabulated 
value for significance at the 5% level. A signifi- 
cant value for the chi-square statistic indicates 
that the variances are not equal. 

2.4. Hydrochlorothiazide assay 

The powder samples were dissolved and ex- 
tracted in methanol-water  (50:50, v/v). Residual 
excipients were removed by filtration through a 
0.45 ~tm pore diameter filter (Millipore, Marl- 
borough, MA). The first 10 ml of the filtered 
solution was discarded to account for any ad- 
sorption of  the solute to the membrane filter. 
Samples were appropriately diluted prior to 
analysis. Hydrochlorothiazide concentrations 
were determined on a Lambda 2S UV-Vis  spec- 
trometer (Perkin-El-mer Corp., Norwalk, CT) at 
271 nm. 

Calibration curves were prepared for the hy- 
drochlorothiazide solutions. A linear relationship 
was obtained over the range 5-20 /~g ml -~. 
Method reproducibility was evaluated by analyz- 
ing 25 samples from the same stock solution 
prepared from accurately weighed amounts of 
hydrochlorothiazide and excipients in the same 
proportion as used in the mixing studies. 

3. Results and discussion 

3.1. Multiple blend study 

Initially, five blends of  identical composition 
were each subjected to different mixing times of  
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Fig. 1. Near-IR absorbance standard deviations (n = 10) for 1, 
5, 10, 15, and 20 min powder blends. Top to bottom at 2030 
nm (hydrochlorothiazide) and 2240 nm (lactose): 1, 5, 10, 15, 
20 min. 
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Fig. 2. UV reference method potency results (n = 10) for l, 5, 
10, 15, and 20 min powder blends. Bars indicate percent 
relative standard deviations. 

1, 5, 10, 15, and 20 min. Characteristic hy- 
drochlorothiazide absorbance occurs primarily at 
2030 nm while lactose demonstrates maximal 
absorbance at 2240 nm. The effect of blend time 
on homogeneity is evident in Fig. 1 which de- 
picts the sample absorbance standard deviations 
versus near-IR wavelength for each batch. 
Again, the most notable regions of spectral vari- 
ation occur at wavelengths characteristic of hy- 
drochlorothiazide and lactose, 2030 nm and 
2240 nm respectively. Qualitative bootstrap sin- 
gle- and multiple-sample algorithms were em- 
ployed to systematically determine the time at 
which the blend had reached a desired degree of 
mixing. 

Fig. 2 represents the UV reference method 
potency results for the 1, 5, 10, 15, and 20 rain 
blend samples. Because the 20 min blend 
demonstrated the most desirable potency and 
uniformity results (99.9% potency, 0.99% RSD) 
according to the reference method, the samples 
from this time point were used as the training 
group for the bootstrap calculations. Using the 
BEST algorithm, single-sample spectra from the 
1, 5, 10, and 15 min blends were tested against 
the 20 min training group. To validate the 
model, individual samples at the 20 min time 
point were tested against remaining samples via 
a leave-one-out cross-validation method. 

Fig. 3 illustrates the results obtained from the 
BEST calculation. The method identified the 
fact that only samples from the cross-validation 
study (20 min time point) were similar to the 
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Fig. 3. Bootstrap standard deviations calculated from the 
BEST calculation using the 20 min samples as the training set. 
The broken line represents a 3SD limit for spectral similarity. 

training samples. This was attributed to the fact 
that although the 10 and 15 min samples had 
similar %RSD when compared to the 20 min 
training group, hydrochlorothiazide assay values 
for both test groups differed from the training 
group by approximately 2% (98.2% and 98.4% 
of theoretical concentration). To evaluate this 
hypothesis, bootstrap calculations were then per- 
formed using the 15 min samples as the training 
group with the results of this study depicted in 
Fig. 4. The method distinguished a majority of 
the samples from the 1, 5, and 20 min blends 
from the training population and identified 70% 
of the 10 min blend samples as being spectrally 
similar to the 15 min training population, thus 
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Fig. 4. Bootstrap standard deviations from the BEST calcula- 
tion using the 15 min samples as the training set. The broken 
line represents a 3SD limit for spectral similarity. 
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Fig. 5. The effect of blend time on the correlation coefficient 
calculated from a modified BEST QQ plot. The broken line 
represents a 98% confidence limit on the 20 rain training set. 

confirming the sensitivity of this method in detect- 
ing minor changes in sample component concen- 
tration. 

Where the single-sample BEST provides for the 
qualitative analysis of a single test sample, the 
modified BEST algorithm uses multiple test sam- 
ples to detect spectral variations well within the 
three standard deviation limit of a training set. 
The detection of subclusters by this method al- 
lows for the determination of  very small changes 
in component concentrations. 

Fig. 5 represents the results of the modified 
BEST calculations. The 1, 5, 10, and 15 min 
spectral groups were tested against the spectra 
from the 20 rain training set. Spectral similarity 
was based on the linearity of the QQ plots gener- 
ated. A 98% confidence limit for the correlation 
coefficient, represented by the broken line in Fig. 
5, was calculated using the 20 rain training set. 
QQ plots with correlation coefficients less than the 
calculated confidence limit were considered to be 
spectrally different from the training group, while 
Q Q  plots with correlation coefficients greater than 
the confidence limit were considered spectrally 
similar. The modified BEST algorithm recognized 
all spectral test groups to be significantly different 
from the 20 min training group. The results can 
be attributed to differences in the hydrochlorothi- 
azide concentration of the samples. As a pattern 
recognition method, the modified BEST algorithm 
is sensitive to variations in cluster size, shape and 
location. 

3.2. Evaluation o f  optimal mixing time f o r  a 
single blend 

Having determined that minor differences in 
powder blend component concentration and con- 
tent uniformity for different blends could be de- 
tected by near-IR spectroscopy, the second part of 
the preliminary experiments focused on evaluating 
an optimal mixing time for a single powder blend 
formulation. A single formulation of the identical 
composition described earlier was blended for a 
total of  30 rain, during which time six unit dose 
samples were thieved from the blender at 2 rain 
intervals. The samples were analyzed in the man- 
ner previously described. The single-sample BEST 
and the multiple-sample modified BEST algor- 
ithms as well as traditional chi-square analysis for 
sample variability were employed to determine 
when the blend had reached homogeneity. 

Fig. 6 represents the UV reference method po- 
tency results (n = 6) for the 30 min blend study. 
UV results demonstrate that at the 10 min time 
point the blend has achieved acceptable potency 
(99.1%) although only marginal uniformity (RSD 
2.4%). At the 16 and 18 min time points, both 
potency (100.0%) and uniformity (0.9% RSD) 
reach optimal values. 

Studies conducted during this experiment indi- 
cated that a minimum number of ten sample 
spectra are necessary to achieve acceptable boot- 
strap calculation results. Because of the sample 
number requirement and the optimal reference 
potency and uniformity results demonstrated by 
the 16 and 18 min samples, these two sample 
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Fig. 6. UV reference method potency results (n = 6) for the 
single blend study. Bars indicate percent relative standard 
deviations. 
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Fig. 7. Bootstrap standard deviations from the BEST calcula- 
tion using the 16 and 18 min samples as the training set. The 
broken line represents a 3SD limit for spectral similarity. 

groups were combined (n = 12) and used as the 
training set for the bootstrap calculations. 

Figs. 7 and 8 depict the BEST and modified 
BEST results respectively. The BEST identifies that 
the blend reaches homogeneity at the 12 min time 
point, whereas the modified BEST concludes that 
blend uniformity is achieved at the 10 rain time 
point. 

Examples of linear and nonlinear QQ plots 
generated from the modified BEST are portrayed 
in Figs. 9 and 10. Fig. 9 depicts the QQ plot of the 
8 and 10 min samples and Fig. 10 represents the QQ 
plot of the 14 and 16 rain samples tested against the 
16 and 18 rain training group. It becomes apparent 
that as sample groups become more similar to the 
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Fig. 9. A QQ plot from the modified BEST calculation 
demonstrating spectral dissimilarity between the training and 
test groups. The 8 and 10 rain samples were tested against the 
16 and 18 rain training set. 

training set, the QQ plots become more linear. 
Although both reference and near-IR methods 

indicate that the blend becomes homogeneous at 
approximately 10-12 min, Figs. 6-8  reveal an 
apparent trend towards increased variability in 
blend uniforimity as mixing continues beyond 20 
min. After 20 min of blending, assay values appear 
to become variable, single-sample BEST distances 
increase, and the correlation values for the modified 
BEST calculation level off just above the confidence 
limit. A principal component (PC) plot of the 
spectral data (PC 2 vs. PC 4) indicates that a 
consistent shift occurs along the fourth principal 
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Fig. 8. The effect of blend time on the correlation coefficient 
calculated from a modified BEST QQ plot. The broken line 
represents a 98% confidence limit on the 16 and 18 min 
training set. 
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Fig. 10. A QQ plot from the modified BEST calculation 
demonstrating spectral similarity between the training and test 
groups. The 14 and 16 min samples were tested against the 16 
and 18 min training set. 
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component axis during the entire mixing process. 
However, a one-way analysis of variance of the 
reference data (Fig. 6) combined with a Scheffe's 
multiple range comparison test (~ = 5%) indicates 
that there are no significant differences between 
assay values from 10 min to 30 min. 

In an attempt to identify the physical or chemi- 
cal phenomenon responsible for spectral changes 
beyond the 20 min time point, loadings spectra for 
each of the first four PCs used in this model were 
plotted. The loadings spectra display the co- 
efficient or weighting given to each wavelength in 
a particular PC array. Often, a loadings spectrum 
will exhibit similarity to the spectrum of an indi- 
vidual component, indicating that the PC in ques- 
tion will describe changes in the concentraton or 
nature of that component. In this study, the load- 
ings spectrum of PC 4 demonstrated features sim- 
ilar to that of a spectrum from pure magnesium 
stearate. The potential for decreased powder blend 
uniformity and related near-IR spectral variability 
following extended blending of formulations con- 
taining magnesium stearate appears to be possible 
in the light of the results reported by the following 
investigators. 

Shah and Mlodozeniec [17], in their study of 
surface lubrication phenomena, suggested that 
during the mixing process, lubricant particles such 
as magnesium stearate first adsorb onto the sur- 
face of individual powder particles or granules, 
then, as mixing continues, distribute more uni- 
formly upon the granule surface following delam- 
ination or deagglomeration mechanisms. By 
affecting the surface characteristics of the powder 
particles, the magnesium stearate may alter the 
flow properties of the material and affect the 
apparent bulk volume of the blended material. 
Furthermore, Murphy and Samyn [18] observed 
that the drug dissolution profiles for lactose-mag- 
nesium stearate compacts were related to the de- 
gree of shear applied during the mixing process. 
Longer periods of shear resulted in extended disso- 
lution times. The authors also noted that powder 
blend bulk and tapped densities increased as lubri- 
cant blend times increased. The increased density 
was attributed to the improved flow properties of 
the blend. Although evidence suggests that the 
spectral variations apparent beyond 20 min in this 
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Fig. I I. Chi-square analysis results (n = 12) from the single 
blend study using the 16 and 18 min samples as the reference 
spectra: solid line = 2030 nm, corresponding to hydrochloroth- 
iazide; chain line = 2240 nm, corresponding to lactose; dashed 
line = 5% significance level for the chi-squared statistic. Points 
below the dashed line demonstrate  variance similar to the 
reference set. 

study are related to the effects of magnesium 
stearate, further studies are necessary before this 
can be established with greater certainty. 

Figs. 11 and 12 depict the results of the chi- 
square analysis. Absorbance values at 2030 nm 
and 2240 nm were chosen for the study because 
they correspond to wavelengths characteristic of 
hydrochlorothiazide and lactose respectively. In 
the 30 min study, the 16 and 18 min samples were 
chosen as the reference spectra. The chi-square test 
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Fig. 12. Chi-square analysis results (n = 10) from the multiple 
blend study using the 20 rain samples as the reference spectra: 
solid line = 2030 nm, corresponding to hydrochlorothiazide; 
chain line = 2240 nm, corresponding to lactose; dashed line = 
5% level for the chi-squared statistic. Points below the dashed 
line demonstrate  variance similar to the reference set. 
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demonstrates that at the l0 rain time point and 
beyond, the variance of the thieved samples did 
not significantly differ from later samples. These 
results corresponded well to the results obtained 
from the bootstrap calculations. 

Interestingly, when the initial 20 min blend 
study was analyzed using the chi-square tech- 
nique, the method indicated that an homogeneous 
blend had been reached at the 5 rain time point. 
An evaluation of the reference method results 
demonstrates that although the %RSDs for the 
samples at each time point were similar (1.81, 
2.39, 1.58, and 0.944%) the potencies of the 5, 10, 
15, and 20 min samples (94.2, 98.2, 98.4, and 
99.9% respectively) were variable. From these re- 
sults it is evident that one disadvantage of using 
the chi-square method to determine blend homo- 
geneity is that it assesses only the variability be- 
tween sample absorbances, and is not sensitive to 
differences in component concentrations. 

4. Conclusions 

The experiments conducted in this study indi- 
cate that near-IR spectroscopy has great potential 
as an analytical tool for blend uniformity analysis. 
Qualitative near-IR analysis can be employed to 
assess the uniformity of a single production blend 
or to define optimal mixing times during the 
development process. The near-IR spectrum of a 
powder sample can be compared with spectra 
from different blender locations, different blend 
times or from a spectral library. 

These experiments have demonstrated that both 
the bootstrap calculations and the chi-square test 
for equality of variance are effective methods for 
qualitative evaluation of powder blend homogene- 
ity. The chi-square technique is limited to the 
analysis of only individual wavelengths and as- 
sesses sample variability without regard to com- 
ponent concentration. However, the bootstrap 
techniques provide additional sensitivity because 
they utilize the entire near-IR spectrum and allow 

recognition of variations in both component con- 
centration and content uniformity. With regard to 
the bootstrap techniques, the modified BEST al- 
gorithm was more sensitive than the single-sample 
BEST in recognizing the minor spectral variations 
that occur in well-mixed systems. 
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